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Overall Research Objectives

To study energetic materials of interest to the Navy/DoD at the high-pressure and 
high-temperature of detonation.

• To study the initiation mechanism of detonation

• To learn the phase, lattice, and molecular symmetry, and 
measure theoretical maximum density (TMD) of a material at 
high pressure and temperature just before initiation

• To understand exactly what chemical bonds are most 
energetic and why, at the pressure and temperature of 
detonation

• To model the global kinetics and reaction mechanisms of 
energetic materials during detonative reactions
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Impact of this Basic Research
• This research generates phase and density data essential for deciding if a new 
material could be used in a weapon

• The relevant data and thermodynamic parameters for each material is  
presented and published to enhance predictive modeling and simulation 
software.

• The results transition into all areas of energetic materials systems in keeping 
with the NAVSEA Grand Challenges of:

• Sixth Generation Energetics
• Assured Lethality/effects
• Scalable Combat Power Materials

• Successful completion of the goals of this program will help develop Navy After 
Next enabling technologies such as:

• High Strength Materials
• Long-life, High-Energy, Insensitive, Solid Propellants
• Energetic Structural Composites
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Experimental Methodology
Use Diamond Anvil Cells (DAC) with coil Heaters (HDAC) to achieve
• High pressures (P) to 10 GPa (100 kbars)
• High temperatures (T) to 300°C (up to 1000 °C possible under Argon)
• Any P, T in that range
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Angle-Dispersive X-ray Diffraction
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Theoretical Method

• The zero degree isotherm may be calculated directly from ab-initio techniques
• Both Hartree-Fock method and Density Functional Theory have been used
• Commercially available computer programs such as GAUSSIAN 98[i] and 

CRYSTAL 98[ii] provide a starting point
• Rigid molecule approximation with additional refinements such as:

– Self-consistent geometry optimization (the crystalline lattice and the 
molecule structure)

– Electronic correlation corrections to correct the total energy  
• Calculations require state of the art computational capability and sometimes 

take 2-4 days to complete

[i]. A. Frisch, M. J. Frisch, GAUSSIAN98 User's Reference (Gaussian, Inc., Pittsburgh, 
1998).

[ii].  R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL98 User's Manual, University of 
Torino.
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Results - Comparison of HMX, -NO2 and -NF2 analogs
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β-HMX = Monoclinic structure
2 molecules/unit cell 
ambient P,T density=1.91 g/cc

HNNX or ESW-21 = Orthorhombic structure
4 molecules/unit cell 
ambient P,T density=1.86 g/cc

HNFX = Rhombohedral structure
9 molecules/unit cell 
ambient P,T density=1.81 g/cc
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HMX Compression at Ambient Temperature
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β-HMX is monoclinic 
with space group: P21/c

3rd order Birch-Murnaghan 
Equation of State yields :
Bulk Modulus: 8.9 GPa
Derivative: 46.5

Previous study by Yoo and Cynn (LLNL)
Bulk Modulus: 14.4 GPa  Derivative: 13.3
*non-hydrostatic using 7 data points to 10GPa*

• We have a lot more (26) lower-pressure data.
• Also our data is on RDX-free HMX.
• Our V0 = 518 Å3 as published in ICDD.
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HNNX Compression at Ambient Temperature

• Ambient pressure orthorhombic lattice is stable to about 2.2 GPa.
• Above that pressure new peaks appear indicating a phase transition.
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Isothermal EOS of HNNX

• The compression of the unit cell a, b and 
c axes flatten towards 2.0 GPa also 
indicating a phase transition

• Above 2.3 GPa, the ambient pressure 
orthorhombic lattice can no longer be 
assumed.
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Univ. EOS formalism (using 
data to 2.3 GPa):
K0 = 7.46  ± 2.45  GPa
K0’ = 20.0 ± 7.3
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HNFX Compression at Ambient Temperature
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• The ambient pressure Rhombohedral (R-3) lattice is stable to 3.4 GPa, the 
highest pressure achieved in study.
• Decompression returns the ambient pressure structure with lower density!
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A view down the c axis showing the packing of 
HNFX. Empty channels occur along the 3-fold 
axes at (0,0,z), a corner of the cell, and at ( 1/3, 
2/3, z) and ( 2/3, 1/3, z) within the cell.
From: Chapman, Gillardi et al. J. Org. Chem., 64, 963 
(1999).

High Compressibility of HNFX
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Bulk Modulus: 2.0 GPa
Derivative : 44

Extremely compressible at near-
ambient pressure.

Decompresses with a larger 
volume than pre-compression V0
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Comparison β-HMX = Monoclinic structure ρ=1.91 g/cc
Bulk Modulus: 8.9 GPa 
Compressibility = 0.11
Derivative: 46.5

HNNX = Orthorhombic structure ρ=1.86 g/cc 
Phase transition at 2.2 GPa
Bulk Modulus: 7.46 
Compressibility = 0.14
Derivative = 20.0 ± 7.3

HNFX = Rhombohedral structure ρ=1.81 g/cc
Bulk Modulus: 2.0 GPa 
Compressibility = 0.50
Derivative : 44.3
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Preliminary Results - RDX single crystal diffraction 
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• Obtained data for RDX at 1 GPa. We have exact atom positions 
for this material at this pressure. We can compute exact bond 
lengths and bond angles at pressure and temperature from such 
data.

• Previously published phase transition of RDX at 3.5 GPa to a 
high-pressure phase.

• We intend to find the lattice symmetry of this high pressure and 
identify that phase.

Scanner
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Compression of FOX-7 at ambient temperature: Lattice and molecular 
symmetry changes

FOX-7 = DiAmino DiNitro Ethylene (DADNE) C C
NH2

NH2

NO2

NO2

•Monoclinic lattice is stable to 4.2 GPa (possibly a transition above 5 GPa)
• Some peaks indicate faster compression than others = anisotropic compression
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Birch-Murnaghan : 3rd order
K0 = 17.9  ± 1.4  GPa
K0

’ = 6.6  ± 4.2

• Above 1.1 GPa, the “b” axis (inter layer) 
compresses faster than the “a” or “c”.

• Anisotropic compression but no change in 
lattice symmetry
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Latest results indicate a phase transition in FOX-7 at above 5 GPa, at room temperature - the 
data is not yet analyzed completely.
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FOX-7 0 K ISOTHERM
HF, 6-21G, 1.05 C, 1.05 H, 1.05 N, 1.00 O
OPTIMIZED BONDS AT EACH POINT

LINEAR EXPANSION λ
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Ab-initio Hartree-Fock Isothermal (0K) EOS Calculations using Gaussian 98
• simple rigid-molecule approximation
• molecule (bonds and angles) optimized using Crystal 98
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Calculations by Dr. F. J. Zerilli 
and M. M. Kukla
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• We are just beginning to understand the 
effect of high P and T. These effects will be 
greater as P and T approach that of 
detonation.

• Experimental and ab-initio EOS and lattice 
symmetry studies for HMX, HNNX and 
HNFX show a phase transition in HNNX, 
with HNFX being extremely compressible.
• Ab-initio calculations show that accuracy 
for molecules more complex than HMX 
require less assumptions

• FOX-7 experiments show anisotropic 
compression with a discontinuous change at 
about 1.1 GPa.  Other vibrational mode 
shifts show increased H-bonding. Symmetry 
changes above 5 GPa are being 
investigated.
• Ab-initio calculations with optimized bonds 
do result in better fits to real data
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